

PROMOTING OPERATIONS RESEARCH EDUCATION
USING A NEW WEB � ACCESSIBLE DIDACTIC TOOL

BALOUKAS THANASIS,
PAPARRIZOS KONSTANTINOS
SIFALERAS ANGELO

Department of Applied Informatics, University of Macedonia Greece, Thessaloniki

Abstract
The scope of this work is to present a new tool with clear didactic
orientation, which will serve as a complementary means in teaching
graphs algorithms. The proposed educational software can be used in
courses like �Network Optimization� or �Graph Theory� and has been
implemented using the Java Programming language. This Java applet is
freely available, platform independent and highly interactive. The most
important feature is that it is Web � accessible and can be used from any
remote place, through a common Internet browser. It is a friendly
application, for the Operations Research Scientist, as also for the novice
student. It features visualizations of the Depth First Search (DFS),
Breadth First Search (BFS), algorithms for determining graph
connectivity (strong or not), topological ordering and the Dijkstra�s
shortest path algorithm. Furthermore, its use is analytically shown
through an illustrative example. Benefits and drawbacks are thoroughly
described in order to support the significance of this tool in Operations
Research education and also possible future work is discussed.

Keywords: Operation Research Education, Network Optimization,
Animation, Visualization, Java

1. INTRODUCTION

Algorithm visualization (AV) depicts the execution of an algorithm, as a
sequence of graphical snapshots, the view of which is controlled by the user [1]. A
variety of approaches can be used to deliver AV over the Web. The limiting factor in all

 Corresponding Author

The 7th Balkan Conference on Operational
Research

�BACOR 05�
Constanta, May 2005, Romania

these approaches was the system � dependent code in which the AV software was written
[2]. The system independence and Web compatibility of the Java language [3, 4, 5, and 6]
have changed the landscape significantly. Applets written in Java seem to be very
promising for the Open and Distance Learning. In this paper, a next step in this evolving
use of the Web for educational purposes is being made. A step made possible by Java and
Java � enabled browsers.

The proposed applet focuses on algorithms for graphs and networks and presents
animated their solutions. For a discussion of these algorithms the reader is referred to [7,
8 and 9]. This applet is not the only software of this kind. Many other educational
programs exist for teaching graph theory or network optimization [10, 11, 12, 13, 14 and
15]; each of them of course, has its own merits and demerits. EVEGA [10] is an
educational visualization environment written in Java which, in its current version,
implements only standard graph search routines such as breadth first search (BFS), depth
first search (DFS) and the maximum flow algorithm. BALSA II [11], TANGO [12] and
XTANGO [13] haven�t been implemented in Java. As a result they are dependent on a
particular platform and not accessible through Java � enabled Web browsers.
DIDAGRAPH [14] also is another useful, more recent, educational tool, but it is not web
� accessible and platform independent. Moreover the Network � enabled solver for the
assignment problem presented at [15] features visualizations only for the assignment
problem and doesn�t incorporate more graph algorithms. On the other hand our applet is
easily extensible and more graph algorithms will be added in a future version. Moreover
its comprehensive documentation enables its extension not only by the author but by any
other programmer familiar with Java language. All the necessary data structures for the
graph are declared and initialized near the top of the applet�s class. So, all he has to do is
to add the appropriate code inside the update method of the component, where the
graphics rendering takes place. This way any new graph algorithm can be easily
incorporated in the tool and be animated.

 There is extensive research in the Web that deals with the evaluation of the
instructional efficacy of such educational tools. Some studies suggest that algorithm
visualizations will not benefit �novice� students, who are just learning a new topic. On
the other hand, the visualizations will probably benefit the more advanced students. These
�experienced� students may use the visualization to refine their understanding of a
particular algorithm. Novice students would benefit more by actually constructing an
algorithm visualization, rather that viewing a predefined one [16]. However, although
having students code their own visualizations can be very valuable, it can also be very
time � consuming endeavor.

The work, described in this paper, focuses on an environment for delivering
predefined visualizations over the World Wide Web. Moreover, some researchers
maintain that it would be better for the student to be more �active� in watching the
visualization. Lawrence [18] found that students, who constructed their own input data
sets for the algorithm being viewed, scored significantly higher on a post test than
students who watched the visualization passively. Besides, some studies claim that
accompanying textual explanations are absolutely essential to the effective instructional
use of Algorithm Visualization. They recommend that it would be better to give the

student textual information at every algorithm step and not only to present students with a
non-stop animation.

Taking the above considerations into account, this Java applet was decided by us,
to have the following characteristics:
 to feature two modes for presenting the visualizations to the students. Firstly, the

algorithm animations may run throughout at one step, allowing the user to set a delay
(in milliseconds) between consecutive steps. Secondly, it can show several running
animations by sequences of discrete snapshots.

 to allow students to input their own fully customizable data sets for the algorithm
being animated. By doing so, it is hoped that students would get more learning
benefits, rather than presenting them a mere predefined input data set. It is believed
that when someone experiments with different input data every time he runs an
algorithm animation, he will eventually be more familiar with the specific algorithm�s
behavior.

 to present students with textual information inside the applet. At every step of the
algorithm, the student is provided with all the necessary textual information regarding
the state of the variables used by the algorithm (i.e. what is the stack content in a
given iteration). It should be pointed out that documentation is dynamically produced
simultaneously with the algorithm execution.

2. DESCRIPTION OF THE APPLET�S GRAPHICAL USER INTERFACE
(GUI)

Figure 2.1 The GUI

The applet�s GUI is divided into four regions, as it is shown in Figure 2.1.
The top region consists of the applet�s menu. The user can:
 Create a new digraph. All the graph nodes get a random color every time the user

double � click inside the graph drawing area.
 View and draw an existing digraph. When a user has already created a graph, he will

always be able to draw it again and modify the existing one (i.e. add new nodes and
modify arc costs).

 Input a data set, namely input arc costs that would be used from network algorithms
like Dijkstra.

 View the matrices which store the digraph. The node � node incidence (adjacency)
matrix, as also the node � arc incidence matrix graph representations have been used
in the proposed tool.

 Solve a problem. The approach, used in this applet, is problem oriented and not
algorithm oriented. The user can choose to solve a problem (i.e. search problem or
shortest path problem by selecting the corresponding algorithm which solves the
specific problem).

 Choose to execute an algorithm. The user can execute an algorithm either by non-stop
animation providing optionally a time delay in milliseconds, or step by step.
Whichever case is selected, all the necessary textual information that accompanies the
algorithm execution is depicted inside the blue vertical strip.

The blank region at the left hand side � which takes up the biggest area of the applet, is
actually the Graph editor. Graph editing guidelines are provided inside the blue vertical
strip that lies at the right hand side of the applet.
The blue vertical strip at the right hand side has three uses:
 Its first use is to give help to the user regarding the graph editor, while he is editing

the graph.
 Its second use is to enable the user to input the data set, to be precise to input the arc

costs (this point will be clarified later by giving an example).
 Last, its third use is to depict textual content � sensitive information regarding the

algorithm being animated.
Finally, the bottom horizontal strip which consists of two labels (in Java), gives
feedback to the user. More specifically it informs him of how many nodes, or arcs, have
already been created and warns him when something might go wrong (i.e. an alphabetic
character instead of a number is typed inside a text box whose value will be assigned to
an arc�s cost). Moreover, while the user draws the graph, it informs him about the mouse
position coordinates inside the blank drawing area. In order to make the applet as
configurable as possible, three parameters were added:
 nodeDiameter, the diameter of each node in pixels.
 nodeToNodeDistance , the desirable distance between nodes in pixels.
 nodeDistanceFromCanvasBorder, the desirable distance of graph from the four

borders of the drawing area in pixels.

3. IMPLEMENTATION ISSUES
The proposed applet has been implemented in Java, compiled with Java 2 SDK

1.4.2 package and executed using the J2SE Runtime Environment (JRE) 1.4.2_03. The
applet has been tested extensively on a Windows XP Professional system, with Service
Pack 2 and Java Runtime 1.4.2_03 installed. The Java 2 Runtime Environment allows
you to run applications written in the Java programming language and can be freely
downloaded from Sun Microsystems [17].

In order for someone to browse the proposed applet, he must have the Java
Runtime Environment previously installed on his system. The AWT package has been
mainly used for all graphics rendering. Furthermore, the interfaces have been created with
the package java.util. Finally, Collection and Map classes have been used extensively
since algorithms like Dijkstra use sets of Graph Nodes.

4. AN ILLUSTRATED EXAMPLE: DIJKSTRA�S ALGORITHM

A demonstration of the applet using an example that implements the single
source shortest path algorithm in networks with non negative arc lengths (Dijkstra) will
be done. The question is to find the shortest paths from node 1 to all the other nodes of
the graph.

The user begins by clicking the button <<NEW DIRECTED GRAPH>> in order
to create a new digraph. To create a NEW NODE one has to double � click inside the
applet's area. In order to create a NEW ARC he has to start dragging from inside a node
and release the left mouse button inside another node. After having created the digraph
the user may input the arc costs by clicking on button <<INPUT DATA>> and giving the
costs inside the text boxes, that lie within the blue vertical strip at the right hand side of
the applet�s area, see Figure 4.1.

Figure 4.1 Creating a network with non negative arc costs

The network depicted in Figure 4.1 has non negative arc costs (lengths) so we can
apply the Dijkstra�s algorithm. At this point the pseudo � code of the Dijkstra�s algorithm
will be presented, in Table 4.1, in order to remind the algorithm�s steps to the reader. The
symbol ��� means set difference and the symbol �U� means set union. Moreover, the
words, written in italics font style, mean comments of the code. Finally, we suppose that
the source node is node 1.

Input: the graph
 the arc costs cij

Output: d, the array of the shortest path lengths
 p, the vector which stores the parent of each node
s=1
d(s) =0
d(j) = ∞ for each node j ≠ s
p(s) = s , the parent of source node equals to the start node
S= {s}, the set of nodes in S consists initially only of the source node
l = s
S�= N � S
while S� ≠ Ø and {(i,j): i  S , j S� } ≠ Ø

 for each arc (l,j) : j S�
 if d(j) > d(l)+ clj

 d(j) = d(l) + clj

 p(j) = l
 end if
 end for
 d(l) = min{d(i):j  S�}
 S=S U {l}

 S�=S�� {l}
end while

Table 4.1 Dijkstra�s algorithm pseudo � code

Figure 4.2: Dijkstra�s algorithm animation at step 2

Now, the user must select <<Dijkstra (Out tree)>> from the choice <<SOLVE A
PROBLEM>>, to start the animation. From that point, the program allows the user to
either run the algorithm at once (allowing him to set a time delay in milliseconds between
consecutive steps) or to run the algorithm step by step. In Figure 4.2 the animation
progress is depicted, just after the user having pressed the button <<STEP>> two times.
It should be mentioned that textual explanation, for the specific algorithm, is depicted
inside the blue window which lies at the right hand side of the applet. The textual
information assists the user absorbing the algorithm, being taught, in a better way. For
each algorithm�s step it was decided to depict the following textual information for a
better user understanding of the algorithm:

 The values of sets S and S�.
 The node l.
 The candidate arcs from node l to set S�.
 The shortest path array values d(j) for all nodes j whose d(j) are greater than d(l) + clj.
 The list of costs from which the minimum cost and hence the new node l is selected.
 Information that node l has added to set S and removed from set S�.

Moreover the nodes, that belong to set S, are colored green, whereas the nodes
that belong to set S� red. In addition, at the top of each node, its current shortest path
length from the source node is written. Whenever a node joins the shortest path tree a
green arc is drawn. Using suitable colors, the user�s understanding of a specific algorithm
can be further improved. Furthermore, certain sound clips have been used at the following
circumstances:
 To inform the user if he tries to create a new node, or arc, when the maximum

number of nodes, or arcs, has been reached. For the educational purposes of our
program the maximum dimensions for a new graph, have been set to 15 nodes and 28
arcs.

 To inform the user if he tries to type an invalid character inside a text box, whose
value will be assigned to an arc�s cost.

 To inform the user if he tries to run an algorithm step by step, that the algorithm�s
execution has reached to the end.

It is believed that using sound clips, inside similar educational software, might
improve the user understanding of an algorithm.

5. CONCLUSION � FUTURE WORK
To sum up, such applets can prove to be very helpful to all the students, in

general, who cannot attend a course in a University class. Every student who wishes to
learn one of the algorithms, implemented in this tool, may use the proposed applet from
any remote place, probably his home. It doesn�t matter what his system is. It only requires
that the Java Virtual Machine, (JVM), is installed into his system. It should be pointed out
that JVM is freely available for download from Sun Microsystems.

Moreover there is an intention to enhance the graph editor, in order that the user
would be able to draw undirected graphs, or networks, as well. Yet this applet could be
further enriched, and possibly visualize more algorithms for digraphs � directed networks
such as the Primal Simplex Algorithm which solves the Minimum Cost Network Flow
Problem (MCNFP).

Besides more algorithms will be added for undirected graphs such as the
Kruskal�s and Prim�s algorithms which solve the Minimum Spanning Tree (MST)
problem. In a future release the applet will be modified, in order to be executed as
standalone Java application as well.

In addition, certain questionnaires will be given to the students of our department
to be filled in, in order to get feedback. This is very important, to improve and evaluate
the teaching effectiveness of our applet in real instruction environment. Students will also
be encouraged to construct their own applets. Finally, the applet being described in this

paper can be accessed or downloaded from
http://eos.uom.gr/~thanasis/GraphAlgorithms.htm.

BIBLIOGRAPHY

[1] Naps T. (1997), �Algorithm visualization on the World Wide Web�the difference
Java makes!�, in Proceedings of the 2nd conference on Integrating technology into
computer science education (ITICSE), Uppsala, Sweden;
[2] Naps T. (1996), �Algorithm Visualization Delivered Off the World Wide Web � Why
and How� in Proceedings of the Association for Computing Machinery�s
SIGCSE/SIGCUE Conference on Integrating Technology into Computer Science
Education, Barcelona, Spain;
[3] Bates B. and Sierra K. (2003), �Head First Java�, published by O'Reilly;
[4] Cohen S. et al (1996), �Professional Java Fundamentals�, published by Wrox Press
Inc;
[5] Sikora Z. (2003), �Java Practical Guide for Programmers�, published by Morgan
Kaufmann;
[6] McBride P. (2002), �Java Made Simple�, published by Made Simple;
[7] Ahuja, K. R., Magnanti, L. T. and Orlin, B. J. (1993), �Network Flows: Theory,
Algorithms and Applications�, Prentice Hall, Englewood Cliffs, NJ;
[8] Paparrizos K., Samaras N. and Sifaleras A. (2005), �Network Optimization�,
published by University of Macedonia Press;
[9] Waite M. and Lafore R. (1998), �Data Structures & Algorithms in Java�, published by
Waite Group Press; Book and CD Rom edition;
[10] Khuri S. and Holzapfel K. (2001), �EVEGA: An educational visualization
environment for graph algorithms�, ACM SIGCSE Bulletin, 33/3, 101-104;
[11] Brown M. (1998), �Exploring algorithms using Balsa-II�, Computer, 21/5, 14-36;
[12] Stasko J. (1990), �TANGO: A framework and system for algorithm animation�,
Computer, 23/9, 39-44;
[13] Stasko J. (1992), �Animating algorithms with XTANGO�, SIGACT News, 23/2, 67-
71;
[14] Dagdilelis, V. and Satratzemi, M. (1998), �DIDAGRAPH: Software for Teaching
Graph Theory Algorithms�, ITICSE �98, Dublin, Ireland;
[15] Andreou D., Paparrizos K., Samaras N. and Sifaleras A. (2005), �Application of a
New Network-enabled Solver for the Assignment Problem in Computer-aided
Education�, Journal of Computer Science, 1/1, 19-23;
[16] Stasko J., Badre A. and Clayton L. (1993), �Do algorithm animations assist learning?
An empirical study and analysis�, in Proceedings of the INTERCHI '93 conference on
Human factors in computing systems, Amsterdam, The Netherlands, 61 � 66;
[17] Sun MicroSystems, J2SE Runtime Environment (JRE) available from
http://java.sun.com;
 [18] Lawrence, A.W. (1993), �Empirical Studies of the Value of Algorithm Animation in
Algorithm Understanding�, Doctoral Thesis, Georgia Tech University.

http://eos.uom.gr/~thanasis/GraphAlgorithms.htm
http://java.sun.com;

